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Introduction

Introduction

Suppose we have a structural equation model, and some data that we think the model
might be appropriate for.
What steps are involved in:

1 Communicating the model to the computer?
2 Obtaining the “best fitting” solution for the model parameters by iteration?
3 Evaluating model fit?

In many cases, one might be able, using modern software, to perform these steps without
much (if any) understanding of how they are in fact accomplished.
However, your decisions about what “buttons to press” in your structural equation
modeling software may be more informed, and may lead to better answers, if you have
some basic understanding of how these steps are performed.
In this module, we’ll look at a simple confirmatory factor model and discuss the steps
involved in fitting it.
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Introduction

A Simple Covariance Structure Model

Consider the simple confirmatory factor model shown on the next slide.
It shows two orthogonal factors, each loading on 3 manifest variables.
Since there are no slings for the factors, they have an assumed variance of 1.
We already know that this factor model can be written

x = Λξ + δ (1)

and that, at the variance-covariance level, the model may be written in the classic LISREL
notation as

Σxx = ΛΛ′ + Θδ (2)
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Introduction

A Simple Covariance Structure Model
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Introduction

A Simple Covariance Structure Model

The model is a covariance structure model. The classic null hypothesis in covariance
structure modeling is written in general form as

Σ = M(θ) (3)

where θ is a vector of free parameters to be estimated, and M() is a model matrix
function that carries the elements of θ into the symmetric matrix Σ.
In the case of our confirmatory factor model, we may easily insert the 12 elements of θ
into Λ and Θδ and compute the elements of M(θ).
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Introduction

A Simple Covariance Structure Model

Λ(θ) =



θ1 0
θ2 0
θ3 0
0 θ4
0 θ5
0 θ6

 , Θδ(θ) =



θ7 0 0 0 0 0
0 θ8 0 0 0 0
0 0 θ9 0 0 0
0 0 0 θ10 0 0
0 0 0 0 θ11 0
0 0 0 0 0 θ12

 (4)
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Introduction

A Simple Covariance Structure Model

M(θ) = Λ(θ)Λ′(θ) + Θδ(θ) (5)

=



θ21 + θ7 θ2θ1 θ3θ1 0 0 0
θ2θ1 θ22 + θ8 θ3θ2 0 0 0
θ3θ1 θ3θ2 θ23 + θ9 0 0 0

0 0 0 θ24 + θ10 θ5θ4 θ6θ4
0 0 0 θ5θ4 θ25 + θ11 θ6θ5
0 0 0 θ6θ4 θ6θ5 θ26 + θ12

 (6)
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Evaluating Model Fit with a Discrepancy Function

Evaluating Model Fit with a Discrepancy Function

Given a model (and its matrix function), any set of parameter estimates may be evaluated
by

1 Substituting the elements of θ into the model matrices and computing the model matrix
function, then

2 Comparing the model-reproduced covariance matrix with the sample covariance matrix.

This comparison is accomplished through a discrepancy function.
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Discrepancy Functions

Discrepancy Functions

In what follows, the model function M(θ) is assumed to be a twice differentiable function
of the t free parameters in the vector θ.
The discrepancy function F (S,M(θ)) is a measure on S and M(θ)). The following 3
restrictions will lead to consistent estimates for the elements of θ

1 F (S,M(θ)) ≥ 0
2 F (S,M(θ)) = 0 if and only if S = M(θ)
3 F (S,M(θ)) is continuous in S and M(θ)
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Discrepancy Functions

Discrepancy Functions
The Ordinary Least Squares (OLS) Discrepancy Function

This Ordinary Least Squares (OLS) discrepancy function is simply half the sum of squared
differences between the elements of the sample covariance matrix and the
model-reproduced covariance matrix, i.e.,

FOLS(S,M(θ)) =
1

2
Tr(S−M(θ))2 (7)

The values of θ that minimize the OLS discrepancy function are called OLS estimates.
OLS estimates have some problems:

1 The OLS discrepancy is not scale free - different scalings of the manifest variables can
produce different discrepancy function values.

2 Moreover, when calculated on sample discrepancies, simple sums of squares may be
inappropriate from a statistical standpoint, because the elements of S are not independent
random variables, and because they usually have different sampling variances.
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Discrepancy Functions

Discrepancy Functions
The Generalized Least Squares (GLS) Discrepancy Function

The Generalized Least Squares (GLS) Discrepancy Function compensates for the
problems of OLS estimates by, in effect, standardizing the sample discrepancies.
This function is

FGLS(S,M(θ)) =
1

2
Tr((S−M(θ))S−1)2 (8)

GLS estimates are values in θ that minimize the GLS discrepancy function.
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Discrepancy Functions

Discrepancy Functions
The Iteratively Reweighted Generalized Least Squares (IRGLS) Discrepancy Function

The Iteratively Reweighted Generalized Least Squares (IRGLS) Discrepancy Function
updates the weights applied to the discrepancies on each iteration.
This function is

FIRGLS(S,M(θ)) =
1

2
Tr((S−M(θ))M(θ)−1)2 (9)

This discrepancy function is used in a Gauss-Newton algorithm as an efficient way to
obtain Maximum Wishart Likelihood estimates.

James H. Steiger (Vanderbilt University) Fitting a Structural Equation Model 13 / 28



Discrepancy Functions

Discrepancy Functions
The Maximum Wishart Likelihood (ML) Discrepancy Function

A more complex function is the Maximum Wishart Likelihood (ML) discrepancy function.
This function may be written

FML(S,M(θ)) = log |M(θ)| − log |S|+ Tr(SM(θ)−1)− p (10)

witn p is the number of manifest variables.
If S has a Wishart distribution (a somewhat less restrictive assumption than the
requirement that the observed variables follow a multivariate normal distribution),
minimizing the ML discrepancy function produces Maximum Wishart Likelihood
Estimates, generally referred to as Maximum Likelihood estimates in the structural
equation modeling literature.
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The Chi-Square Test of Fit

The Chi-Square Test of Fit

If S has a Wishart distribution, the model is identified, and θ has t free parameters, then
under fairly general conditions (n − 1)FML(S,σ(θ), and (n − 1)FGLS(S,σ(θ) both have
an asymptotic χ2 distribution with p(p + 1)/2− t degrees of freedom.
Such a χ2 statistic, often described as a “goodness-of-fit” statistic (but perhaps more
accurately called a “badness-of-fit” statistic) allows us to test statistically whether a
particular model fits Σ perfectly in the population, i.e., whether Σ = M(θ).
There is a long tradition of performing such a test, although it is becoming increasingly
clear that the procedure is seldom appropriate.
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A Caution about Parameter Count

A Caution about Parameter Count

As mentioned above, the degrees of freedom for the asymptotic χ2 test statistic are
p(p + 1)/2− t, where t is the number of free parameters in θ.
Beginners are sometimes surprised when the degrees of freedom reported by their
structural equation modeling program do not “add up.”
This can happen when the parameters in θ are not mathematically independent and
variable, i.e., some parameters are determinate functions of others and are not free to
vary independently.
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A Caution about Parameter Count

A Caution about Parameter Count

An example of this is in unrestricted exploratory factor analysis, in which the elements of
the p ×m factor pattern Λ are not free to vary independently.
In the handout Confirmatory Factor Analysis with R I demonstrate why a certain number
of the elements of Λ may always be set equal to zero, and hence are not free to vary.
For example, if one has p variables and m factors, there are p ×m loadings p unique
variances, and m(m − 1)/2 factor intercorrelations to estimate. So with 9 variables and 3
factors, one might expect the parameter count to be 27 + 3 + 9 = 39, and the degrees of
freedom to be p(p + 1)/2− 39 = 45− 39 = 6.
However, in EFA, the degrees of freedom in general are actually

1

2
((p −m)2 − p −m) = 12

. So the number of “really free” parameters is 6 fewer than it seems.
Fortunately, modern software can deduce the correct number of degrees of freedom
during iteration in most cases.
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Nonlinear Optimization

Nonlinear Optimization

We have our model function, and we have chosen our discrepancy function (let’s say, ML).
We are ready to find the best fitting θ.
How is this done? By “iteration,” or more formally, by nonlinear optimization with an
iterative algorithm.
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Nonlinear Optimization

Nonlinear Optimization

It turns out that some basic understanding of the nature of the nonlinear optimization
process may give you a way out of the dreaded “Model failed to converge” error message
that always seems to occur when you least expect it.
It is a fact that structural equation modeling software, be it commercial or open-source or
somewhere in-between, always converges on all the examples in the manual unless the
manual deliberately contains an example of non-convergence in order to school the user
on approriate “rescue measures.”
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Nonlinear Optimization

Nonlinear Optimization

As an example of the kind of approach typically taken, we’ll examine the well-known
Gauss-Newton approach, used in several commercial software programs.
The iteration starts with initial estimates (often referred to as “starting values”) for the
elements of θ.
On each iteration, the current value of the function is calculated, and the program
estimates, using derivatives, which direction of change for θ will produce a further
decrease in the discrepancy function.
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Nonlinear Optimization

Nonlinear Optimization

θ is changed in that direction by an initial amount (called the “step length”), and the
function is recalculated with this new θ.
It may be that, according to certain criteria, the initial step went either too far, or not far
enough. In that case the step length may go through several adjustments during an
iteration.
Once the “best” step length is estimated, the program moves on to the next iteration.
When the discrepancy function stops improving, the algorithm terminates.
Now for some technical details.
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Nonlinear Optimization

Nonlinear Optimization

Let d(θ) be a vector of first partial derivatives (of the elements of M(θ) with respect to
the elements of θ. That is,

d(θ) = ∂VecM(θ)/∂θ (11)

In the Gauss-Newton approach Hk is an approximate Hessian given by

Hk = 2d′(θk)d(θ) (12)

and gk is the negative gradient of the discrepancy function with respect to θ, i.e,

gk = −∂F (S,M(θ))/∂θ
∣∣∣
θ=θk

(13)

Lee and Jennrich(1979, Psychometrika) showed that the Gauss-Newton step using the
IRGLS estimator is equivalent to the Fisher scoring step
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Nonlinear Optimization

Nonlinear Optimization

In the Gauss-Newton algorithm, the estimate on the kth iteration is related to the
estimate on the next iteration by the formula

θk+1 = θk + λkH
−1
k gk (14)

= θk + λkδk (15)

where δk establishes the direction of change for the parameters on the kth iteration, while
the scalar parameter λk establishes, jointly with δk , the length of the step vector.
Especially during the early phases of iteration, the program may attempt to take
extremely large steps.
Often, this causes no problem, and in fact hastens the progress toward a correct solution.
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Nonlinear Optimization

Nonlinear Optimization

However, sometimes large steps result in a set of parameter estimates that cause iteration
to “blow up,” either because

1 The estimates yield a singular estimated covariance matrix, or
2 Because the estimates end up in a region from which step direction is incorrect, and recovery

is impossible.

If the step direction is correct, but the step length is too large (or too small), the program
can recover by changing the step length via an adjustment of λ.
Notice that, once the step direction has been established by δ, the multidimensional
optimization problem has been reduced to a unidimensional optimization problem in
which the parameter search occurs only along the line established by δ, hence the term
“line search.”
Optimizing a function in only one dimension is non-trivial, but a lot easier than
multidimensional optimization.
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Nonlinear Optimization

Nonlinear Optimization
Line Search

There are a number of classic algorithms available for the line search, including bisection,
golden search, and cubic interpolation.
Several software programs have used simple stephalving as the line search method.
In this approach, a full step is taken initially (i.e., λ = 1). If this full step yields a
reduction in the discrepancy function, the iteration cycle continues. If a reduction does
not occur, λ is divided by 2, thus halving the step length, and θk and the discrepancy
function are recalculated.
If this fails to produce an improvement, the step is halved again, etc.
Although it often works very well, simple stephalving can fail, for an obvious reason (C.P.).
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Nonlinear Optimization

Nonlinear Optimization
Steepest Descent Iterations

Sometimes, when full Gauss-Newton iteration fails, one can rescue the optimization by
inserting some “steepest descent interations” at the beginning of the optimization.
These are defined as

θk+1 = λkgk + θk (16)
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Nonlinear Optimization

Nonlinear Optimization
Jennrich-Sampson Modification

Sometimes, during iteration, the program will step to a boundary of the parameter space.
Other times, the approximate Hessian will become singular.
Jennrich and Sampson (1968, Psychometrika) developed an ingenious procedure that can
often solve both problems and keep the iteration going.
Although it was originally developed in the context of non-linear regression, the method
transfers beautifully to covariance structure modeling, and several programs use it.
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Rescuing an Optimization – General Principles and Methods

Rescuing an Optimization – General Principles and Methods

If iteration fails, there are a number of things you can try.
1 If the iteration was still proceeding at the default maximum number of iterations, increase

the maximum. Most if not all programs will allow you to do this.
2 Examine your manifest variables. If there are huge differences in their variances, reduce them

by multiplying or dividing by a simple constant like 5 or 10. Do not standardize by dividing
by the observed standard deviation.

3 Increase (or decrease) the number of steepest descent iterations.
4 If your program offers the option, reduce the initial step length by starting λ at a value much

less than 1. In my experience, the majority of failed iterations can be rescued with this
simple method.

5 Try to get different starting values. There are several ways you can do this.

1 Try a different method of calculating starting values. Several programs have “default” values
and “automatic” values. The latter may help in cases where the former fail.

2 One is to try a different discrepancy function (OLS or GLS, for example) and, if that converges,
use the estimates as starting values. Some programs offer the option to do this automatically.

3 Another is to break your model into submodels and estimate each separately. In general,
smaller models are easier to optimize than larger models.

6 Use another program. One program may succeed where others fail.
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